# **3P INSTRUMENTS**

## DEPARTMENT OF POROUS MATERIALS





Characterization of

particles · powders · pores



#### **Overview**

- 0.) Altamira Company History
- 1.) What is Chemisorption
- 2.) Altamira AMI-300 family
- 3.) Altamira µBench-cat and Bench-cat systems





# **Company History**

#### HISTORY OF ALTAMIRA INSTRUMENTS

- Founded in 1985 in Pittsburgh, Pennsilvania
- Pioneered automated catalyst characterization
- More than 400 instruments installed
- Global Customer base
- Recognized for excellence in customization





# **Company History**

AMI CATALYST CHARACTERIZATION FAMILY

• µBenchCAT BENCH-TOP REACTOR SYSTEMS

 BENCHCAT and BenchCAT-HTS CUSTOM REACTOR SYSTEMS





# **Company History**

- Cooperation with 3P Instruments started in June,
   2018
- OEM-supplier of the Quantachrome ChemStar until 2019
- Cooperation between Altamira and Anton Paar / QuantaTec was apparently terminated





### What is Chemisorption?

#### **Physisorption**

- Physisorption = Adsorption based on weak van-der-Waals-Wechselwirkungen
- Reversible
- Monolayer-/Multilayeradsorption on the complete available surface area

**Typical systems:** 

N<sub>2</sub>, Ar, Kr at 77 or 87 K, CO<sub>2</sub> at 273 K



Inert gas on the complete available surface area of the material within the sample cell



## **What is Chemisorption**

#### **Physisorption**

- Physisorption = Adsorption based on weak van-der-Waals-Wechselwirkungen
- Reversible
- Monolayer-/Multilayeradsorption on the complete available surface area

**Typical systems:** 

N<sub>2</sub>, Ar, Kr at 77 or 87 K, CO<sub>2</sub> at 273 K



Inert gas on the complete available surface area of the material within the sample cell

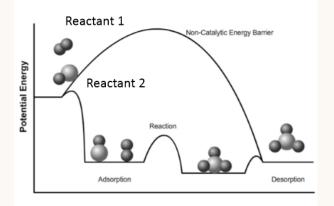
#### Chemisorption

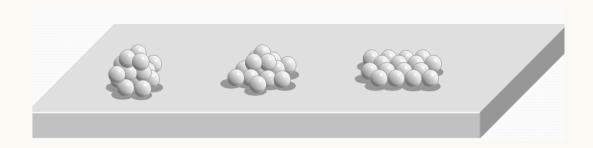
- Chemisorption = Adsorption by formation of a chemical bond (usually covalent) between adsorbate and adsorbent
- Irreversible
- Monolayer adsorption on the active surface area of a catalyst

**Typical Systems:** 

CO, H<sub>2</sub>, NH<sub>3</sub>, O<sub>2</sub>, SO<sub>2</sub> on Pt, Pd, Ni, etc...




Reactive gases on metal centres at T > RT




#### What is Chemisorption?

#### Chemisorption to determine the active metal surface area

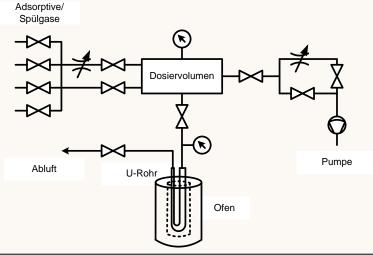
The most important information of a functionalized substrate carrier is:
How many metal centres are available for a chemical reaction on the surface?





- Atoms on the inside of crystallite deposits do not participate in the reaction!
  - Amount of active centres can be deduced from the chemisorbed amount of gas
  - How much energy is required to produce and activate a catalyst?




#### What is Chemisorption? - Methods

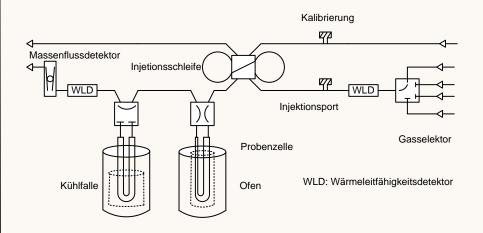
#### (Vacuum) Volumetric Method

Isotherm-Analysis, comparable to physisorption measurements

#### **Determines:**

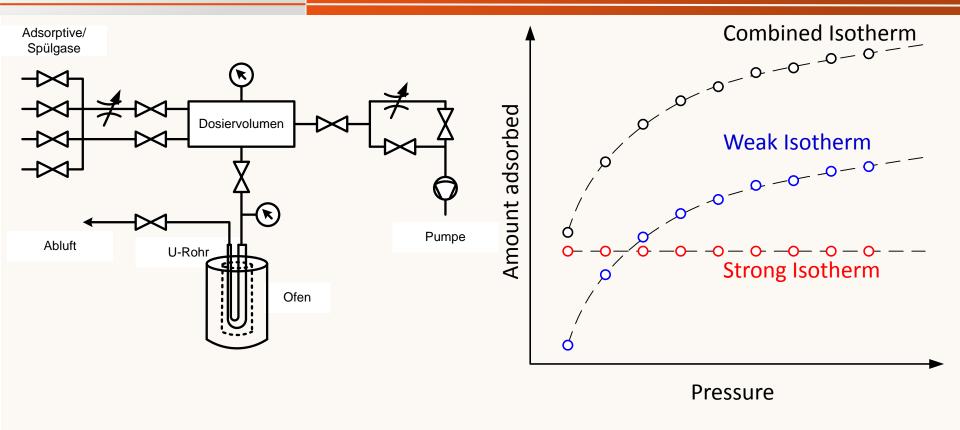
- Monolayer capacity
- Dispersion
- Crystallite size
- Adsorption enthalpy




#### **Dynamic flow method**

#### **Temperature Programmed Reactions TPX**

- TPR (TP Reduction)
- TPO (TP Oxidation)
- TPD (TP Desorption)


#### **Puls-Titration**

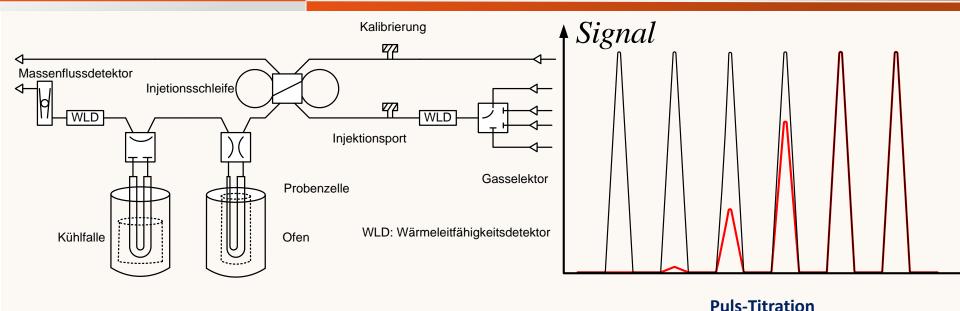
Determination of monolayer capacity





#### What is Chemisorption? - Methods



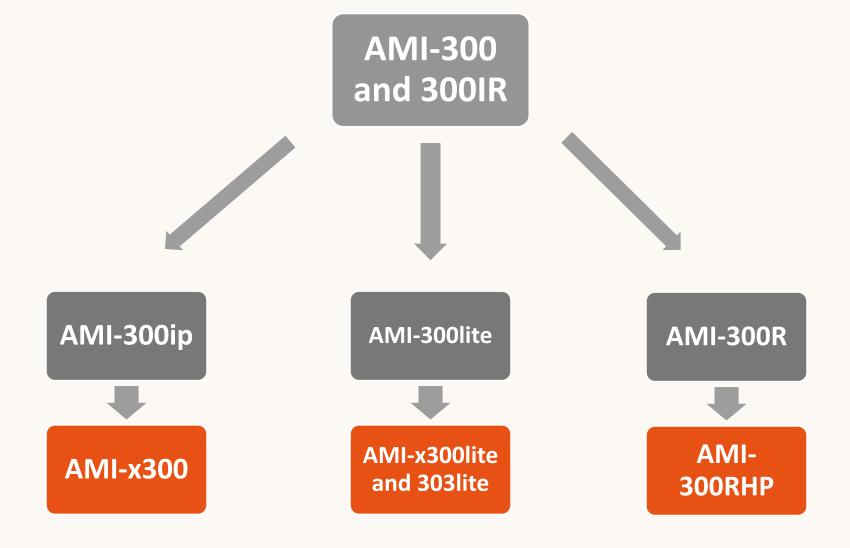

First recorded isotherm is the combined isotherm – contains both physi- and chemisorption

Second recorded isotherm is the weak isotherm – contains only physisorption

Difference between the two is the strong isotherm – contains the chemisorption information

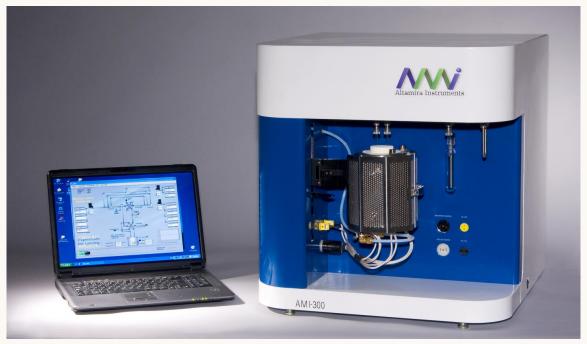


#### What is Chemisorption? - Methods




$$V_{ads} = V_1^{inj} - \left(\frac{A_1^{inj}}{A_1^{sat}}V_1^{inj}\right) + V_2^{inj} - \left(\frac{A_2^{inj}}{A_2^{sat}}V_2^{inj}\right) + \dots$$

Note, that after each pulse, weakly bound molecules will be carried away by the carrier gas, which means the adsorbed amount corresponds to the strong adsorption from the volumetric method.




# The AMI Characterization Family





## AMI -300: THE TESTS



- TEMPERATURE PROGRAMMED REDUCTION
- TEMPERATURE PROGRAMMED OXIDATION
- TEMPERATURE PROGRAMMED DESORPTION
- ISOTHERMAL REACTIONS
- PULSE CHEMISORPTION
- DYNAMIC BET





## **AMI -300: COMPONENTS**



- INTERNAL TCD
- OPTIONAL SECONDARY DETECTORS (GC, MS, FID)
- HIGH TEMPERATURE FURNACE (1200C)
- GAS BLENDING INSIDE INSTRUMENT
- VAPOR SPARGING
- TEMPERATURE SAFETY SWITCH





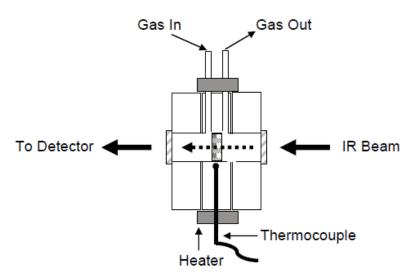
#### WHY BUY AN AMI?

- FULLY AUTOMATED
- SAFETY COMPONENTS
  - Check valves on each gas inlet line
  - Hardwired TSS (redundant thermocouple)
  - Alarm Matrix for all process variables
  - Options for:
    - Gas flow stoppage if reactor breaks
    - Seismic mounts
- MASS SPEC
  - Can be connected at reactor or at vent
  - MS data is incorporated into the AMI data file
  - Custom fragmentation software gives gas pressures and not just mass numbers
- CRYO-OPTION to -130°C
- "OPTIONS"
  - Vapor generator is standard with the AMI
  - Analysis software is standard with the AMI





### **AMI -300: OPTIONS**


- ANALYTICAL DEVICES
  - MS
  - GC (AMI can trigger at customer defined intervals)
  - FID (yield total hydrocarbon amount)
  - FID with methanizer
- EXTRA GAS BLENDING
  - Altamira's 4<sup>th</sup> MFC is strictly for gas blending and not for TCD reference
- CRYO-OPTION
  - -130°C minimum
- HARSH SERVICE APPLICATIONS
  - High percentage sulfur compounds (H<sub>2</sub>S, SO<sub>2</sub>)
  - Halides





## **AMI -300***ir*





- IN-SITU OBSERVATION OF ADSORBED SPECIES TO DETERMINE TYPE AND MODE OF ADSORBTION
  - TEMPERATURE PROGRAMMED OXIDATION/REDUCTION
  - TEMPERATURE PROGRAMMED DESORPTION
  - PULSE CHEMISORPTION





### **AMI -300***ir*

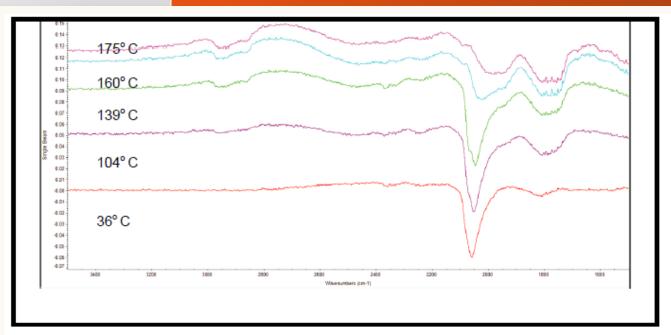



Figure 5. CO signal as a function of temperature.

#### CUSTOM TRANSMISSION CELL

- Temperatures to 500°C (variable of inert/carrier gas)
- May be used in conjunction with other detectors (TCD, MS)
- Cells are also available for RAMAN or other applications (i.e. photo-catalysis)





# AMI -300ip = Higher Throughput

#### AMI-300*ip* is:

- Two Work Stations
  - -1 for Pretreatment
  - -1 for Characterization
- Switch functions automatically







### **AMI-x300**



#### **AMI-5300**

- 5 times the through-put!
- Fully automated from a single PC
- Each station is fully independent
- Multi-port Mass spectrometer allows for queue of stations and sampling
- X300 gives you the option to have as many stations as you want





## **AMI – 300lite**



- •"Economy" version but can perform TPR, TPO, TPD, Pulse Chem and a single point BET
- •The only fully automated "lite" instrument in the industry
- •Optional pre-treatment station at the same time as TPR/TPO/TPD/Pulse Chemisorptions!
- Optional multi-station available for higher throughput!

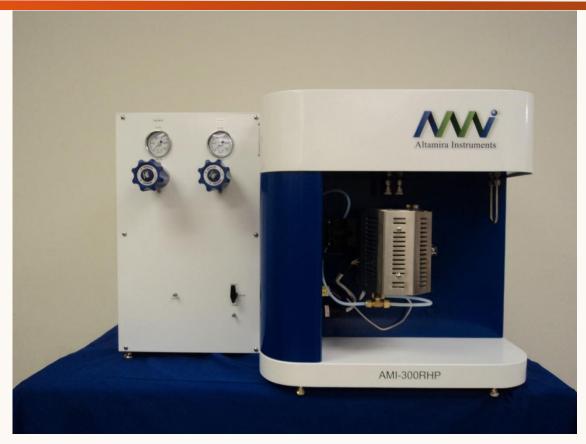




# The New AMI - 303lite

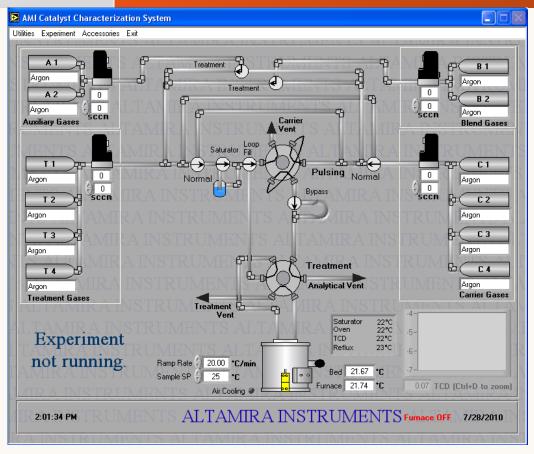


- •Run 3 samples at one time!
- •3 TCDs, 3 reactors (in one furnace), 3 MFCs (one per station)
- •TPR, TPO, TPD, Pulse Chemisorption






## **AMI - 300 RHP**

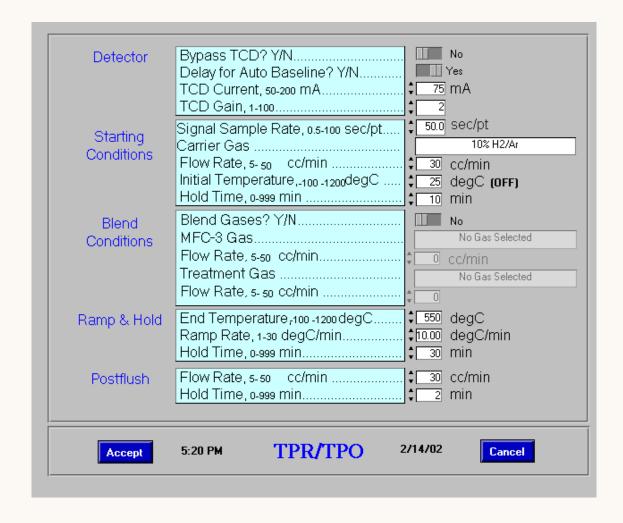

# AMI-300 RHP

- •R = pump; HP = high pressure
- Liquid pump
- High pressure reaction experiments (two in one: micro-reactor AND chemisorption)
- High Pressure characterization (to 100 bar)
- Auxiliary Detection Valve(s) for reaction experiments to external device
- Automatic pressure regulation





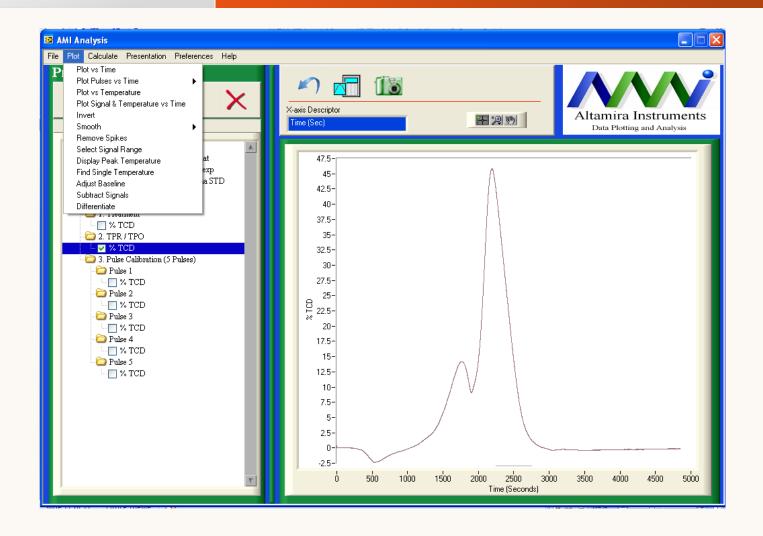
# **AMI 300 SOFTWARE**




- Software operates on Windows platform via LabVIEW
- Fully Automated designed for unattended operation
- User Friendly experimental setup and control via P&ID-like screen
- Control and/or trigger MS, GC, FID, etc...

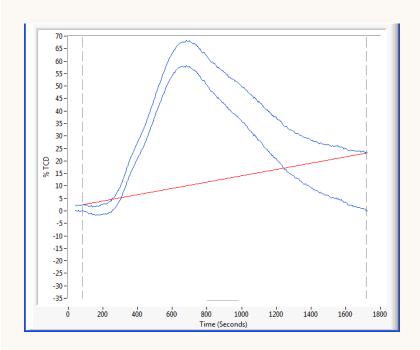




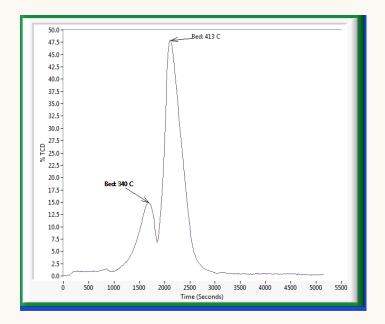

# DEFINING PARAMETERS FOR PROCEDURES








## **ALTAMIRA ANALYSIS PROGRAM**

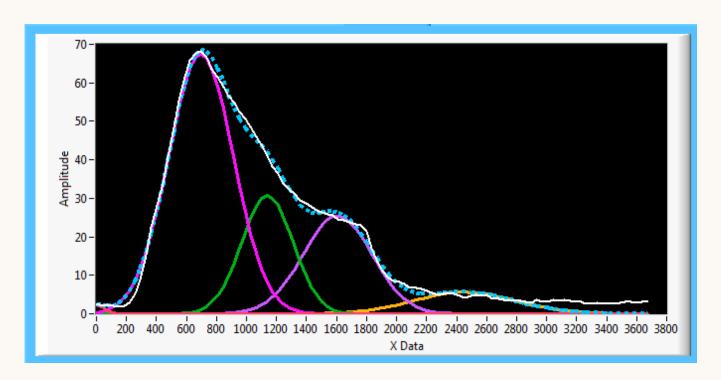





# ADJUST BASELINE AND DISPLAY PEAK TEMPERATURES



 Adjust your baseline automatically by a simple click and drag!  Locate peak temperatures with a simple click of the mouse.






## **PEAK FITTING OF COMPLEX CURVES**

## Peakfit of a TPD

- Gaussian fit of a 64% Ni/SiO2 TPD
- $R^2 = .9934$







# **COMMON QUESTIONS: AMI**

- How do the results between static and dynamic chemisorption processes compare?
- What kind of samples are suitable for testing?
  - Supported metal catalyst
  - Acid catalysts
  - Oxidation catalysts
  - Even some samples for gas-sorption measurements
- Spec-manship/Performance specifications?





# **µBENCHCAT REACTOR SYSTEMS**



#### μBenchCAT

- Fully automated standardized bench-top reactor for catalytic studies.
- Gas or liquid phase possibilities
- Standard options for pumps, pressures, and material





# **µBENCHCAT REACTOR SYSTEMS**



## μBenchCAT

- Up to 6 gases
- •Up to 2 liquids
- •650C to 1200C depending upon reactor material
- •Heated oven to 200C for liquid/gas preheating and vaporizations
- •Hardware, Firmware, and Software safety measures
- Connection to external analytical devices

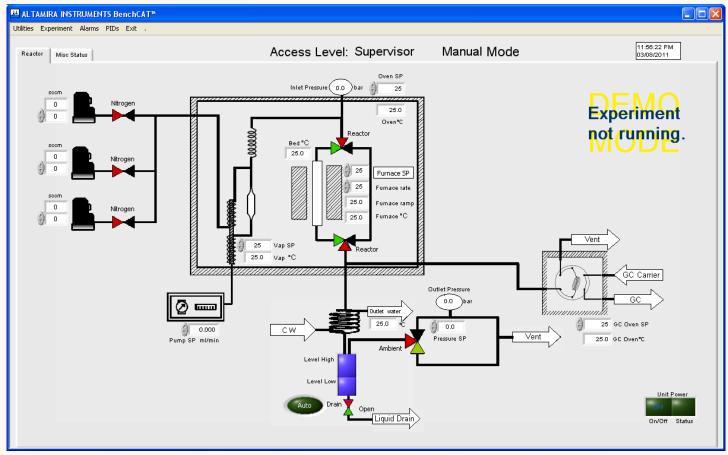




# WHY BUY a µBENCHCAT

#### SAFETY COMPONENTS

- Check valves on each gas inlet line
- Hardwired TSS (redundant thermocouple)
- Alarm Matrix for all process variables
- Flow Safety (automatic positive shut-off valves)
- Pressure Relief Valve(s) built in
- PLC Alarms
- Multiple User Profiles


#### FUNCTIONALITY

- MFCs are set once with an inlet pressure, no "ramp-up"
- Every component is fused
- Open frame design
- Optional vaporizer design with carrier gas or atomizer
- CHEMISORPTION MODULE (external detector)
- PHOTO-CATALYSIS and RAMAN MODULE
- DUAL STATION MODULE (series/parallel)





# **µBENCHCAT REACTOR SYSTEMS**



μBenchCAT

- Valve positions, flow rates, temperatures, pressures, and product sampling are all automated
- Experiments are easily written in minutes





# COMMON QUESTIONS: µBENCHCAT

- Can a µBenchCAT be adapted to perform spectroscopic measurements?
- Can a system run in series or parallel mode?





# **BENCHCAT<sup>TM</sup> REACTOR SYSTEMS**

#### **BenchCAT**

Fully automated *customized* reactor, for example:

- -Diesel Catalyst Studies
- -Fuel Cell Catalytic Membrane Studies
- -Fisher Tropsch Studies
- -Gasification
- -Hydrocarbon Dehydrogenation Studies
- -Reactions Studies of Acetic Acid







# **Application: Study of Reactions involving Membranes for Fuel Cells**



- -Custom designed stainless and quartz reactor for various temperatures and pressures
- -Analysis performed upstream and downstream of membrane





## Characterization of

particles · powders · pores

## **Application: Trans-Esterification of Oil with** Methanol (Biofuels)



- -Liquid pressures to 350 bar
- -Level Control for liquid collection





# **Application: Studies of Hydrocarbon Hydrogenation**



- -Pressures to 100 bar and temperatures to 800°C
- -Multiple detectors: FID, GC
- -4 station instrument





### **Application: Oxidation Reaction Studies**



- -Four station instrument with sampling valve to MS that allows for station queues.
- -Added lexan covers for safety





## **Application: Pyrolysis of Methyl Chloride**



- -Fluid Bed Reactor
- -Wet Test Meter for mass balance calculations





### **Application: Petroleum Studies**



- -Six-station plug-flow reactor in 1 oven
- -Liquid sampling system with level control





## **Application: Oxidation Reactions**



- -6 Stations in a single furnace
- -Separate Electrical Cabinet



## **Application: Methanol Synthesis**



- -Slip-stream sampling to MS
- -20 bar inlet charged to 100 bar before reactor with compressor
- -Recycle loop with purge

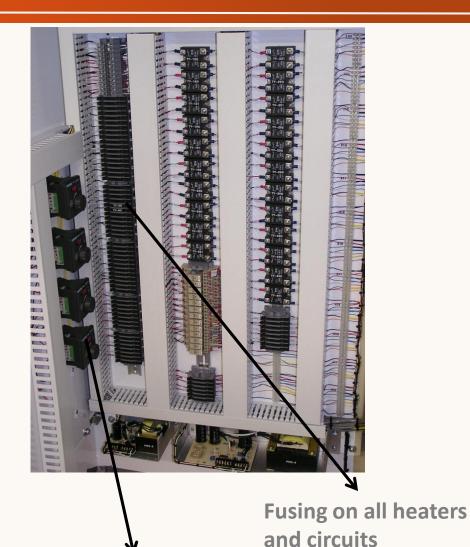


## **Quartz Reactors in a Single Furnace**









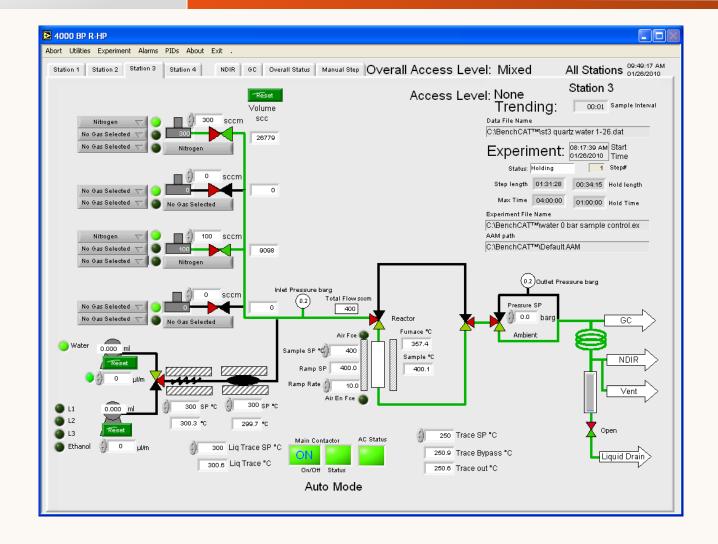

#### **Inside the Electrical Cabinet**



Data Sampling up to 50 Hz

Independent power to all stations

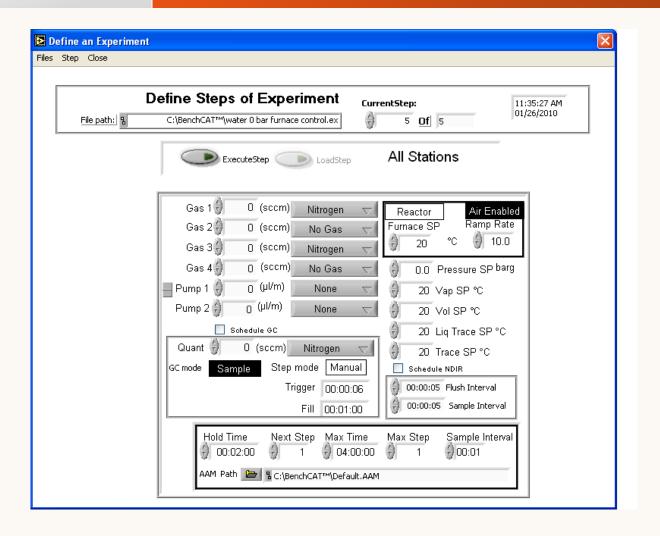



arra ci

**Temperature Safety Switches** 






#### **BENCHCAT<sup>TM</sup> SOFTWARE**







#### BENCHCAT<sup>TM</sup> SOFTWARE





## COMMON QUESTIONS FOR A BENCHCAT CUSTOMER

- What are the temperature and pressure conditions?
- What is the catalyst loading?
- How many and what type of gases?
- How many and what type of liquids?
- Number of stations?
- Are there any physical size requirements?
- What external analytical devices do you need?
- What is the mode of the reactor?
  - PFR
  - CSTR
  - Trickle-bed





## **3P INSTRUMENTS**

#### **DEPARTMENT OF POROUS MATERIALS**

#### **THANK YOU!**



Characterization of particles powders pores



Characterization of

particles · powders · pores