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e Particle Size Distribution

* Rheology Overview

* How particle properties link
to rheology
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Effect of particle size |
Nanoparticles (small)

* For small (<~1um) particles colloidal
effects on rheological properties can be
significant:

* Brownian motion
« The random movement of particles due to the
bombardment by the solvent molecules that

surround them
« Attractive / repulsive colloidal forces Emulsion Droplets (large)
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Effect of particle size

» For large particles (>~1um) the direct effect of
increasing size shows little viscosity difference
for the same volume fraction

* Increasing volume fraction for the same particle
size, increases viscosity

Large particles
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For small particles,(<~1um)
there is a relationship

Decreasing particle size gives
a increased viscosity

Small particles
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Effect of particle size \\\///\ Malvern
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« Adding coarse talc to an epoxy
 For constant volume fraction decreasing particle size will increase
viscosity
* The increased number of small particles give rise to colloidal
repulsion, increasing viscosity at low shear

28.6% fine talc

D50 = 0.5 : .
102 (P50=0.5um) > This relatively weak
10" force is broken down
) at higher shear rate
@© 28.6% coarse talc .
0 10°| " (D50 = 1.9 um) leading ’Fo the
= converging of
10 0% talc — viscosities
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Effect of particle loading

Krieger-Dougherty equation
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n —viscosity of the suspension
Nmedium — VISCOSIty of the medium
¢ — volume fraction of solids in the suspension

¢, — maximum vol. fraction of solids in the suspension
[n] — intrinsic viscosity of the medium (2.5 for spheres)
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» Describes the amount of particles in a material

* ¢ — volume fraction of solids in a suspension

* ¢, — maximum volume fraction of solids in the suspension (i.e. the
maximum amount of particles that can be added to the suspension)
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Effect of particle loading N\ Marvern
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As volume fraction (¢) increases... \\\\\\\\\\\\\\\ aspec¥scompany
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Volume fraction of particle

> Then viscosity (n) increases.
> Packing more molecules makes flow more difficult.
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* Viscosity (1) is increasing with an increased volume fraction as
suggested by Krieger-Dougherty
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Kinetic Sand vs.

Play Putty
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1,000,000 Pas

100
100,000 Pas
1,000 Pas
1 001 Y - fHz 1 10
Kinetic Sand 10

110,000 Pas
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PARTICLE SIZE DISTRIBUTION @
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Effect of particle size distributions <\ Para¥fic

« \We can keep the volume fraction (¢) the same.
* Now, change the particle size distribution...

Particle Size Distribution
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Effect of Distribution on Maximum \\\// Malvern
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* As the particle size distribution increases, this allows a greater
packing fraction.

Random Random
monodispersed polydisperse close
close packing packing
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Effect of Maximum Packing Fraction <\ Pa2¥ica!
« As maximum packing fraction increases... UU:>
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> Then viscosity () decreases.
> Allows more free flowing particles (self lubricating)
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Effect of particle size distribution
* For the same volume fraction and particle size, a narrow particle size

distribution has a higher viscosity compared to a broad particle size

distribution.
* As size distribution increases, @, increases in the Krieger Dougherty

equation, resulting in a reduced viscosity.
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How to Achieve Stability?

* Prevent coagulation through
inter-particle repulsion

« Slow down sedimentation by
increasing viscosity of
continuous phase

» Make it ‘solid’ by creating a
network structure
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Stablllty Which Method? \\\// Malvern

\ Panalytical
[N It Depends \\\\\\\\\\\\\\\\\\ aspec¥scompany

 Particle radius (a) will have a large bearing on suspension
stability

* For sub micron particles Brownian motion is usually significant
to overcome effect of gravity

 For larger particles gravity dominates if there is a significant
density difference (4p)

Gravitational @Am k T Brownian
Forces A B Forces

The Structure and Rheology of Complex Fluids; R Larson
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Experimental

* /5% wiw Silica dispersion made
up in deionised water

» Zeta potential evaluated using a
Malvern Zetasizer Nano ZS with
autotitrator

* Particle size evaluated using a
Malvern Mastersizer

* Rheological properties measured
using a Kinexus rheometer

YYWWEXKUS



Colloidal Stablllty \//Malvern
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 To maintain stability through Brownian motion we need to prevent
particles sticking when they collide

 This can be achieved by increasing the charge associated with the
particle i.e. zeta potential.

REPULSION
e hlmﬁ e

LONG RANGE ELECTROSTATIC
(DOUBLE LAYER)

Mask / neutralise charge with counter-ions Dec ase
zeta gotential

ATTRACTION

SHORT RANGE
VAN DER WAALS




Colloidal stability and DLVO Theory \\,)//' mavern
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> An energy barrier resulting from combination of the attractive and
repulsive forces prevents particles approaching each other

closely.
» Zeta potential 2 £30mV

© ~ O

REPULSION

Energy

COMBINED
ENERGY
+/- 30mV considered

e / suitable threshold value for
5 ——  stability

Particle separation
ATTRACTION

> So long as particle Kinetic Energy does not exceed this
barrier coagulation should not occur.
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> An energy barrier can also result by adsorbing of amphiphilic
polymers onto the particle surface preventing close approach

REPULSION .ﬁ %

COMBINED
ENERGY . .
Stability tends to increase
b / with molecular weight,
——  surface coverage and

Particle separation . .
/ / solvent affinity
ATTRACTION

> A steric mechanism is likely to be much more efficient in non-
aqueous solvents and high electrolyte systems

Energy

-

REPULSION




Effect of zeta potential on low
shear viscosity N\ maiver
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» Low shear viscosity increases with increasing zeta potential
thus high charge will help slow down sedimentation

Log Viscosity

Log Shear Stress



Experimental

Silica Dispersion Stability |
Why is it not stable? ’

- Initial sample evaluation made using at
natural pH of dispersion 6.2.

- Despite having a zeta potential of — 50 mV
the suspension was found to be unstable.

Isoelectric Titration Graph

75% wiw Silica dispersion
made up in deionised water.

Zeta potential evaluated using a
Malvern Zetasizer Nano ZS
with autotitrator .

Particle size evaluated using a
Malvern Mastersizer with
Hydro S dispersion unit.

Rheological properties
measured using a Kinexus
rheometer.
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- Lets check particle size...




Experimental

> 75% wiw Silica dispersion
made up in deionised water.

Particle Size and Density sl

with autotitrator .

> Particle size evaluated using a
Malvern Mastersizer with
Hydro S dispersion unit.

> Rheological properties
measured using a Kinexus
rheometer.

« Sample was characterised on a Mastersizer

and was found to have a median particle
size of 3.7 ym.
* The largest particle was approximately 20 pm.
Particls Slze Distribution
9
o
7
£ 6
@ 3
5 4
S 3
2
1
H.D‘I 0.1 1 10 100 1000 3000

Particle Size (pm)

« Particle density was 2600 kg/m3



Experimental

> 75% wiw Silica dispersion
made up in deionised water.

Force Balance on Particle N S S e

with autotitrator .

> Particle size evaluated using a
Malvern Mastersizer with
Hydro S dispersion unit.

> Rheological properties
measured using a Kinexus

rheometer.
24
Malvern  © 2010 uatem msiruments Linaod

» The above relationship for the median particle size (3.7 ym) gives
a value of 45 and for the largest particle (20 um) a much higher
value of 38,000!!

* This means that gravitational forces are dominant for this
sample

 This would explain why sedimentation occurs and indicates that
another approach is required to induce stability
K.T

4 B
=




How to Achieve Stablhty? \\\// Malvern
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Only for particles less than 1 micron

« Slow down sedimentation by
increasing viscosity of
continuous phase

» Make it Solid by creating a
network structure
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Effect of Viscosity (Dilute Systems)

- Stokes equation can be used to predict settling

velocity (V) of a dilute suspension within a
continuous phase; viscosity (n)

[ _ 280da*)

9

YIELDSTRESS:

An ever increasing viscosity as the shear

. . . rate approaches zero, i.e. a does not flow
- Velocity increases with the square — sl saar
of particle size making this the @ o
The viscosity plateau’s as the shear rate

most critical parameter

Log Viscosity

 To slow down sedimentation rate:
* Increase low shear viscosity
» Decrease particle size

approaches zero, i.e. flows / liquid like
when stationary.

.
.
.
el
........
teaa.
.........

G=mViscometerm—=)>

Measurement range

» Match density of dispersed and 10

LogShearRate 106

continuous phases e e e



Experimental

» 75% wiw Silica dispersion
made up in deionised water.

) Zeta potential evaluated using a

Silica dispersion, what viscosity? s 2otz ano 5

with autotitrator .

) Particle size evaluated using a

Using our example in the equation Malvern Mastersizer with

Hydro S dispersion unit.

> Rheological properties
measured using a Kinexus
rheometer.

F- N
Malvern oo v sarmets Lot

* If 5Smm sedimentation per year was acceptable we
would need a viscosity in the region of 11 Pas for this

Silica dispersion
» This is ~11,000 times the viscosity of water! But at low shear...
 Details of a concentrated system modification in the reference below

9 Particls Slzs Distribution
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Particle Size (um)

Barnes, H A (1992), Recent advances in rheology and processing of colloidal
systems, The 1992 IChemE Research Event, pp. 24-29, IChemE, Rugby



Additives for Increasing Low
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“¥IELOISTRESS™

An ever increasing viscosity as the shear
rate approaches zero, i.e. a does not flow
/ solid like when stationary.

OAIginates Py . [“] ZERO SHEARVISCOSITY

0 Methyicellulose g approsches zero, s, flows | Uquid ke
0 Acacia gum E, when stationary.

O Gellan gum .....................................

o Hydroxyethylcellulose
o Bentonite clay

i 10-¢ Log ShearRate 106
(@) LapOnlte CIay ‘:m Stqdying weaker D ‘:ﬂ Stu‘dying stronger D
@) Tragacanth interactions interactions

o Xanthan gum

oAssociative Polymers ) Choice of thickener will depend on

oSurfactant Lamellar system compatibility and required
flow properties — some may induce a
yield stress

<G=uViscometerm—=)>

Measurementrange




Non-colloidal gold!

Approx. “Particle Size”
Length 2mm
Width 2 mm
Thickness 0.1 um

Approx. radius
equivalent (a)

45.7um

!.qu mlm‘g‘l’:ﬁ:‘m S p ‘\. foin
 Woorreouporree 0% alcol. 010



Additives for Increasing Low
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“YIELD:STRESS”

An ever increasing viscosity as the shear
rate approaches zero, i.e. a does not flow
/ solid like when stationary.

ZERO SHEARVISCOSITY

DI] The viscosity plateau’s as the shear rate
approaches zero, i.e. flows / liquid like
when stationary.

Log Viscosity

.,
LT
-----
cesa
.........
------
-----

<G=mViscometer =)

Measurementrange

10°¢ Log Shear Rate 106

Studying weaker |]|j Studying stronger [I]:’
interactions interactions

o Alginates
0 Methyicellulose

Laponite clay
Tragacanth

Xanthan gum
Associative Polymers
Surfactant Lamellar

m
o0 Hydroxyethylcellulose
o0 Bentonite clay

CO0OO0OO0O0




Maintaining performance and

functionality

n (Pa.s)

102

107

100

10

102
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High ‘low shear viscosity’ helps to
slow down sedimentation

Low ‘high shear viscosity’
important for application e.g.
printing, brushing

10-2

103

107 10 10" 102 103
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Only for particles less than 1 micron

KINETIC STABILITY

- Make it Solid by creating a " | N S S —
network structure _




YIELD STRESS /
THERMODYNAMIC
R N STABILITY
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Colloidal stability and DLVO theory \\
g < &+
> When electrostatic forces can be minimized it is
possible to produce a secondary minimum.

» Zeta potential > OmV
REPULSION * (Iso-electric point)

e:e:o I T o:?:e

© T ATTRACTION

Energy

COMBINED
ENERGY

Particle separation
ATTRACTION Secondary
minimum

> If secondary minimum is deep enough a strong
reversible flocculated network can be formed




Forces in a stable dispersion
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© 0 000
REPULSION © 00000
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Mask / neutralise counter-ions D
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Experimental

» 75% wiw Silica dispersion
made up in deionised water.

" ) Zeta potential evaluated using a
Zeta Potential M Zescr o 23
with autotitrator .

) Particle size evaluated using a
Malvern Mastersizer with
Hydro S dispersion unit.

> Rheological properties
measured using a Kinexus
rheometer.

F- N
Malvern oo

« Titrating the silica sample with HCI on a Zetasizer Nano with MPT-
2 autotitrator.

lzoelectric Titration Graph

Zeta Potertial imY)

pH
- The isoelectric point (where the zeta potential is zero) is in the very
acidic (pH 1) region.



Experimental

) 75% wiw Silica dispersion &
made up in deionised water

Rheology of dispersions at
different pH N mEmmm Uitz

Hydro S dispersion unit.
\\ » Rheological rti l [
N\ R vl il !

rheometer.

F’.
Malvern

» At lower pH’s particles associate more causing an
increase in viscosity as approaching isoelectricpoint

 This is favourable for stability

pHZ2.42

020 01 1 .
0020 No Yield Stress
°%°o _
0.01 . : : . — : . . . :
o %o 0.1 1 v 1/s 10 100

- Low pH samples show no viscosity plateau suggesting solid like
behaviour at rest

- Measurements repeated on the same loaded sample indicate reversible
flocculation due to a secondary minimum



Yield Stress N\ wmaivem
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At high pH there is no elastic network hence no yield stress
observed.

* As pH is lowered stronger interactions occur leading to larger
yield stress.

105
= o T,
10+ Zf TS PH2.42 - yield stress = 15.8 Pa
‘|D3 _-
W
[
n_ .
10 A
1 . pH3.97 — no yield stress
D1 LA L D L L O I L L L L L LL  B IO
00 50 100 20.0 30.0 40.0 oPa 55.0 65.0 75.0 85.0




Experimental

> 75% wiw Silica dispersion
made up in deionised water.

What Yield Stress is sufficient? iz

with autotitrator .

> Particle size evaluated using a
Malvern Mastersizer with

Hydro S dispersion unit.

> Rheological properties
measured using a Kinexus
rheometer.

 For a particle to stay suspended
the yield stress must exceed the
gravitational force acting on the
particle

 This can be estimated from the following equation:

O, :Y(pD _pc)rg

Y is the critical yield parameter (0.33 for
Stokes law) which has been shown to have a
range of values based on various studies

* For the silica sample, a o, of just 0.1 Pa will do!

P B. Laxton and J. C. Berg. Gel trapping of dense colloids. J. Colloid Interface Sci. 285:152-157 (2005)

N
Malvern 2010 satem msinments Limaod wowew, malvern, com
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 Emulsions, foams and dispersions where
components are tightly packed together

» Associative polymers that interact strongly
enough to form an extended network through
the dispersion medium

* Flocculated dispersions which form a strong
extended network

» Glassy materials which are essentially frozen
in a solid state
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Only for particles less than 1 micron

KINETIC STABILITY

THERMODYNAMIC STABILITY




Summary - Stable suspensions \\\///\Mauvem
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* Particle sizes <1 um
» Create a large charge on the particle, 230 mV
« Optimise for long range electrostatic repulsion
* More stable with higher LOW shear viscosity

* Particle sizes > 1 ym (depending on density)
* Now particles are large enough that gravity has an effect
* Rheology is now needed to make a stable dispersion
* Induce a yield stress through network forming polymers or clays
« Slow down sedimentation by increasing low shear viscosity through use
of appropriate additives
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* http://accessintelligence.imirus.com/Mpowered/book/vchei15/i1/p1
» Search: “chemengonline paint a clear picture”

* http://www.malvern.com/en/support/events-and-
training/webinars/W160922RheologyParticulateDispersions.aspx

» Search: “malvern understanding controlling rheology particulate”
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Thank you for your attention

Any Questions?

adrian.hill@malvern.com

www.malvernpanalytical.com




