

Capillary Rheology Training Course Introduction to capillary rheometer theory & technology Application introduction and discussion

Dr **Adrian Hill** Product Technical Specialist – Rheometry Malvern Instruments Limited, UK

Brno May 2019

Overview

- Will give you a general understanding of what is "rheology"
- Details some of terms and definitions for shear viscosity

What is rheology...?

• The technical definition is:

"The science of deformation and flow"

• But, what does this really mean?

Why Measure Rheology?

- **Polymers** we need to understand how the melt flows and to design moulds
- Foods to give the correct appearance, texture and processing characteristics
- Paints to give shelf life and correct surface finish
- Inks to give print clarity and good metering
- Pharmaceuticals for accurate dosing, sedimentation characteristics and effectiveness to the patient
- also important in: mud slurries, drilling fluids, bitumens, rubbers, etc...

Examples of Polymer Processing

Rosand Product Range

- The **capillary** instruments
- From the entry level bench top instrument to the research level floor standing instrument

Rosand RH2000

Rosand RH7 / 10

© Malvern Panalytical 2018

Studying Flow

- With a capillary rheometer we are mostly focusing on how a material flows under different conditions
- Simply put:
 - Viscosity the resistance to flow at different...
 - Shear Rates the conditions
- Viscosity is a function of shear rate different viscosities under different conditions

What is Shear Rate?

• Really just a deformation rate. How much work are we putting into the sample?

	Process	Typical shear rate range (s ⁻¹)						
	Reverse gravure	100,000	-	1,000,000				
Faster processes, squeezing materials through smaller gaps	Roller coating	10,000	Ι	1,000,000			Measurable on a Rosand capillary rheometer Measurable on a Kinexus rotational rheometer	
	Spraying	10,000	Ι	100,000				
	Blade coating	1,000	-	100,000				
	Mixing/stirring	10	-	1,000		\succ		
	Brushing	10	-	1,000				
	Pumping	1	-	1,000				
	Extrusion	1	-	100		r		
	Curtain coating	1	-	100				
	Levelling	0.01	-	0.1				
	Sagging	0.001	-	0.1				
	Sedimentation	0.000001	-	0.0001	cal 20	18		

MFI – Melt Flow Indexers

- Capillary rheometers are, in very simple terms, advanced MFI's
- A rheometer allows a far greater understanding of the materials' property

MFI Shortcomings

- Uses a weight (pressure) to extrude the material
 - Industrial processes work in a rate (rather than stress) mode
 - The shear rate depends on the material properties, and is typically very low (lower than typical industrial processes)
 - Only a single stress used
- Results in arbitrary units of grams per 10 min
 - Not engineering units!
- Only able to get an indication of flow at a particular temperature
- A capillary rheometer has far greater sensitivity, control and test procedures

- For a given piston speed (= constant shear rate)
- The **higher the viscosity** the higher it's resistance to flow out of the barrel
- Therefore, a higher pressure is recorded
- Pressure is related to shear stress

 $Viscosity = \frac{Shear \, Stress}{Shear \, Rate}$

© Malvern Panalytical 2018

Shears the sample through the die

- A shear flow is typically presented as a sliding deck of cards
- This is, in simple terms, what occurs inside the die of a capillary rheometer

Flow Curves

- Three general flow behaviours
 - Viscosity is a function of shear rate

> Most, real, samples are shear thinning with Newtonian regions

 By changing the piston speed we apply different shear rates to the sample, and plot the viscosity at each different shear rate

- Most samples, especially polymers will have the above profile
- In practice for polymers only the power law region is usually recorded

Shear Thinning

• Why the different regions?

> Entanglement resists flow. Viscosity is resistance to flow, therefore, more greater entanglement, higher viscosity.

Typical Results 1

- To record a viscosity against shear rate curve we increase the shear rate in a step wise fashion
- The shear rate is held constant to record a stable value of pressure
- As the shear rate is increased, the **pressure increases**

Typical Results 2

- <u>Piston speed</u> is converted to shear rate
- <u>Pressure</u> is used to calculate stress
- Typically interested in shear viscosity versus shear rate
- Plot both on a logarithmic scale
- However, shear viscosity is only one part of the rheology

Capillary vs. Rotational Polypropylene Viscosity

- Polypropylene measured at 190 °C
- Same results on a capillary and rotational

Capillary vs. Rotational

Covers a wide range of shear rates

• The higher shear rate range of the Rosand rheometers can compliment the range of the Kinexus rotational rheometers

© Malvern Panalytical 2018

Summary

- Overview of how a capillary rheometer works
- Introduced the concept of viscosity as resistance to flow

Overview

- Introduces the Bagley correction
- Corrects capillary die data for entrance effects
- Needed to get absolute viscosity results

Twin Bore Design

Malvern Panalytical a spectris company

• The twin bore design allows flexible use of the rheometer:

1. Single bore, uncorrected

• Simple shear viscosity measurements, uncorrected for entrance pressure

2. Twin bore, Bagley corrected

 Most common test. Simultaneously uses a shear die and orifice die to measure shear (corrected for entrance pressure) and extensional viscosity

3. Two materials, uncorrected

Run two samples at the same time

Extended shear rate, uncorrected

 Use two different dimension dies for a greater shear rate range

The left bore is used first, typically with the long, capillary die. The orifice die is always on the right for Bagley corrected experiments.

- The pressure in the long die is a resultant of the entrance effect, the shear flow and the exit effect
 - The material through the 1 mm diameter die needs to speed up to maintain the same flow rate as was in the 15 mm diameter barrel
 - This acceleration should be accounted for to obtain "true viscosity"

• Extrapolating the pressure back to a zero length die should give a zero pressure drop

> However, there is an entrance pressure effect

Historical Bagley Extrapolation

- Measure the pressure drop on a series of dies of decreasing length
- Linear extrapolation to a Length : Die (L/D) ratio of 0
- The alternative method, orifice die, measures directly at a L/D of 0
- > This avoids problems with extrapolation

Extrapolation Problems & Alternative Methods

• Measure the pressure drop on a series of dies of decreasing length

Cogswell Orifice Die Method

• With an long capillary and orifice die on a twin bore instrument it is possible to get **direct measure of entrance pressure drop**

- > No extrapolation needed
- This allows Bagley correction to get true shear viscosity

Pressure Effects

- The capillary die has a shear pressure drop (L_L) that the orifice dies does not

The Bagley Correction

- To account for the pressure drops, a long capillary die accompanied with a short orifice die is used
- An orifice die has a matching die diameter to the capillary die but possesses approximately zero length and will therefore only have entrance and exit effects
- This can be used to remove the entrance and exit effects to leave true shear viscosity
- Apply Bagley Correction and the Flowmaster software automatically subtracts this pressure variation to give you the true viscosity value

Summary

- To get true shear viscosity, the entrance & exit effects need to be corrected
- This can be calculated through the Bagley correction

Overview

- There is more to viscosity than just shear viscosity; there is also extensional viscosity
- This section introduces and defines extensional viscosity

More Than Just Shear Viscosity

- The orifice die can provide more than just true viscosity values
- To conserve volumetric flow rate through the die (i.e. the same amount of material enters and exits the die), the material must accelerate from the barrel through the die
- On accelerating the material stretches it becomes elongated, or extends
- This resistance to stretch is called extensional viscosity
- The orifice die can be used to calculate this extensional viscosity

Extensional in Action

- Possible to see the coloured polymer:
 - 1. Accelerate as it is approaching the die
 - 2. Stretch going into the die

Orifice (Zero Length) Die

Rosand zero lengths dies have an effective length of 0, but an actual length of 0.25mm.

- A die with an effective zero length will therefore only have entrance and exit effects
- This means minimal shearing of the sample
- Therefore the zero length die can be used to:
- 1. Correct the long die to remove entrance effect to leave **true shear viscosity**
- 2. Calculate **extensional** (or elongational) viscosity

Cogswell Method

- Effectively, the **only resistance** to flow through a die with an effective zero length (orifice) will be **extensional**
- There is **minimal shearing** of the sample
- The pressures from the die with the piston speed can be used to calculate extensional viscosity
- > With the Rosand twin bore design, the long die and orifice die can to run simultaneously to calculate **shear & extensional viscosity**

Extensional Viscosity
$$(\eta_{E}) = \frac{\text{ExtensionalStress}}{\text{Extensional Rate}} = \frac{\tau_{e}}{\dot{\epsilon}}$$

- > The term **Tensile** or **Elongational** Viscosity is also used, along with σ for stress, and $\dot{\gamma}$ for shear rate
- > It is the dominant effect for fibre spinning, film blowing, blow moulding
- > Also affects: flow through dies, gates, runners, mixing elements, etc.

Trouton Ratio

- Extensional viscosity tends to be greater than the shear viscosity
- For **Newtonian** materials, there is a constant **ratio** between the shear and extensional viscosity:

$$\eta_E = 3 \eta_s$$

• For polymer melts, this ratio is a lot higher. It can be 1,000 times as high

$$\eta_E > 3 \eta_s$$

Calculating Shear & Extensional Viscosity

- There are a number of ways of calculating extensional viscosity. This training will concentrate on two:
- 1. Historical Bagley correction
 - Use "Constant shear rate test / Two materials, uncorrected" test
- 2. Cogswell method using an orifice die
 - Use "Constant shear rate test / Twin bore, Bagley corrected" test

Typical Results

- Extensional viscosity introduces another material property
- Shear viscosity can be the same when comparing two different samples, however, extensional viscosity can be different. (Note: kiloPa.s)

 Although the three different samples exhibit similarities between the shear viscosities, the extensional properties show significant differences

Summary

- Viscosity is more than just shear viscosity
- Introduced the term extensional viscosity
- Simply put, the resistance to stretching

